Diverse Toxic Chemicals Disrupt Cell Function through a Common Path
نویسنده
چکیده
0001 When technological advances in the 1930s provided the means to synthesize chemicals from petroleum and natural gas, the petrochemical industry ramped up production of diverse species of novel compounds without testing their safety. By 1940, a billion pounds of synthetic petrochemicals were produced each year. Of the more than 38 million chemicals reported in the scientifi c literature, 80,000 to 150,000 are used in commercial production. A report from the Harvard School of Public Health, published in The Lancet last November, warned that “a substantial number” of these chemicals—which show up in everything from cosmetics and textiles to rubber ducks and pacifi ers—may be capable of damaging the human brain, particularly during development. Any hope of developing large-scale toxicological screening methods depends on determining whether diverse toxic chemicals act through common pathways. Though few such mechanistic pathways have been identifi ed so far, diverse toxicants can make cells more oxidized. Oxidative stress results when harmful free radicals or other “pro-oxidants” overwhelm the cell’s anti-oxidant machinery, disrupting normal function. But changes in oxidative state also control multiple normal cellular functions, raising the possibility that toxicants might also affect these normal processes by making cells more oxidized. The signifi cance of these oxidative effects—particularly, whether they might constitute a unifying principle of toxicity—has been unclear, however, in part because different toxicants increase oxidation through different mechanisms, and because the relationship between their harmful effects and their effects on oxidative status are not well understood. In a new study, Zaibo Li and colleagues provide evidence for a novel general principle of toxicology by showing that toxicants with different chemical properties converge on activation of the same regulatory pathway with similar results. The authors monitored the response of progenitor cells isolated from the developing central nervous system to two metal toxicants, methylmercury and lead, and an organochlorine herbicide, paraquat. They found that each toxicant disrupted normal cell function by making cells more oxidized, and setting off a chain reaction that ultimately inhibited signaling pathways required for cell division. Signifi cantly, these effects occurred at environmentally relevant, low-level exposures for lead and methylmercury. The authors studied the chemicals’ effects in cells called oligodendrocyte precursor cells (OPCs), which give rise to the myelin-forming oligodendrocytes of the central nervous system. OPCs are particularly suited to toxicant screening, the authors explain, because of their sensitivity to small changes in oxidative (or redox) state, which determines whether the cells divide or differentiate. (When a cell or molecule undergoes an increase in oxidation state, it is oxidized; when it undergoes a decrease, it is reduced.) Previous studies by these authors have shown that redox changes in the range of 15%–20% can greatly alter responsiveness to extracellular signaling molecules, and that such changes may help regulate the normal development of these cells. For example, OPCs that are slightly more reduced undergo extensive cell division when grown in the presence of the cell-division stimulator platelet-derived growth factor (PDGF). In contrast, OPCs that are more oxidized, within normal physiological redox ranges, undergo differentiation. Exposing OPCs to low levels of methylmercury, similar to those found in the environment, made the cells 20% more oxidized—and inhibited cell division (as indicated by the number of cells in the synthesis phase of the cell cycle). For example, methylmercury levels as low as 20 nM (equivalent to four parts per billion) caused a 25% drop in the percentage of cells that underwent cell division in response to PDGF stimulation. Each year, methylmercury is detected in the cord blood of 600,000 infants at levels equal to or above those producing these effects. Reduced cell division, the authors show, resulted from disrupted PDGF signaling: proteins normally activated by PDGF signaling (for example, Erk1/2 and Akt) were inhibited by exposure to methylmercury (analyzed at the still sublethal exposure level of 30 nM), which also reduced the abundance of PDGF’s receptor, PDGFRá. To fi nd out which part of the PDGF pathway methylmercury targeted, the authors exposed OPCs to neurotrophin-3 (NT-3), a signaling molecule that also activates Erk1/2, a downstream component of multiple signaling pathways. Since neither Erk1/2 nor TrkC, the NT-3 receptor, were affected by the toxicant, they concluded that it must act upstream of this component. These results suggested that methylmercury might activate an enzyme—the ubiquitin ligase cCbl—that targets PDGFRá for degradation. This possibility seemed especially attractive since c-Cbl doesn’t target TrkC and is activated by Fyn, an enzyme previously shown to be activated by oxidative stress. And that’s what the authors found: methylmercury activates Fyn, which then activates c-Cbl, which in turn reduces PDGFRα levels by targeting the receptor for degradation. Methylmercury’s effects could be blocked by suppressing Fyn or c-Cbl with appropriate molecular constructs, by overexpressing PDGFRα, or by inhibiting Fyn activation with the pharmacological blocker PP1. The pro-oxidants lead and paraquat (which differ chemically both from each other and from methylmercury) produced the same effects as methylmercury on OPCs and on the PDGF pathway (about 20% increased oxidation, Fyn and c-Cbl activation, Diverse Toxic Chemicals Disrupt Cell Function through a Common Path
منابع مشابه
Toxic causes of mental illness are overlooked.
While proper brain function requires the complex interaction of chemicals perpetually occupied in purposeful biochemistry, it is well established that certain toxic substances have the potential to disrupt normal brain physiology and to impair neurological homeostasis. As well as headache, cognitive dysfunction, memory disturbance, and other neurological signs and symptoms, disruption of brain ...
متن کاملIdentification of Thyroid Receptor Ant/Agonists in Water Sources Using Mass Balance Analysis and Monte Carlo Simulation
Some synthetic chemicals, which have been shown to disrupt thyroid hormone (TH) function, have been detected in surface waters and people have the potential to be exposed through water-drinking. Here, the presence of thyroid-active chemicals and their toxic potential in drinking water sources in Yangtze River Delta were investigated by use of instrumental analysis combined with cell-based repor...
متن کاملOptimized Standard Cell Generation for Static CMOS Technology
Fabrication of an integrated circuit with smaller area, besides reducing the cost of manufacturing, usually causes a reduction in the power dissipation and propagation delay. Using the static CMOS technology to fabricate a circuit that realizes a specific logic function and occupies a minimum space, it must be implemented with continuous diffusion runs. Therefore, at the design stage, an Euleri...
متن کاملOptimized Standard Cell Generation for Static CMOS Technology
Fabrication of an integrated circuit with smaller area, besides reducing the cost of manufacturing, usually causes a reduction in the power dissipation and propagation delay. Using the static CMOS technology to fabricate a circuit that realizes a specific logic function and occupies a minimum space, it must be implemented with continuous diffusion runs. Therefore, at the design stage, an Euleri...
متن کاملIn Vitro Reporter Assays for Screening of Chemicals That Disrupt Androgen Signaling
Endocrine disruptive chemicals (EDCs) modulate hormone signaling and cause developmental and reproductive anomalies. Today, there is a global concern regarding endocrine disruption effects, particularly those mediated by the androgen receptor (AR). Androgen or male hormones are critical for the development and maintenance of male characteristics and numerous EDCs exist in the environment with t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Biology
دوره 5 شماره
صفحات -
تاریخ انتشار 2007